Non-Cyclic Subgroups of Jacobians of Genus Two Curves

نویسنده

  • Christian Robenhagen Ravnshøj
چکیده

Let E be an elliptic curve de ned over a nite eld. Balasubramanian and Koblitz have proved that if the ` roots of unity μ` is not contained in the ground eld, then a eld extension of the ground eld contains μ` if and only if the `-torsion points of E are rational over the same eld extension. We generalize this result to Jacobians of genus two curves. In particular, we show that the Weiland the Tate-pairing are non-degenerate over the same eld extension of the ground eld. From this generalization we get a complete description of the `-torsion subgroups of Jacobians of supersingular genus two curves. In particular, we show that for ` > 3, the `-torsion points are rational over a eld extension of degree at most 24.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Cyclic Subgroups of Jacobians of Genus Two Curves with Complex Multiplication

Let E be an elliptic curve de ned over a nite eld. Balasubramanian and Koblitz have proved that if the ` roots of unity μ` is not contained in the ground eld, then a eld extension of the ground eld contains μ` if and only if the `-torsion points of E are rational over the same eld extension. We generalize this result to Jacobians of genus two curves with complex multiplication. In particular, w...

متن کامل

Large Torsion Subgroups of Split Jacobians of Curves of Genus Two or Three

We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians split completely and have various large rational torsion subgroups. For example, the rational points on a certain elliptic surface over P of positive rank parameterize a family of genus-2 curves over Q whose Jacobians each have 128 rational torsion points. Also, we find the genus-3 curve 15625(X + Y 4 + Z)− 96914...

متن کامل

Large Torsion Subgroups of Split Jacobians of Curves of Genus Two or Three Everett W. Howe, Franck Leprévost, and Bjorn Poonen

We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians split completely and have various large rational torsion subgroups. For example, the rational points on a certain elliptic surface over P of positive rank parameterize a family of genus-2 curves over Q whose Jacobians each have 128 rational torsion points. Also, we find the genus-3 curve 15625(X4 + Y 4 + Z4)− 969...

متن کامل

Large Cyclic Subgroups of Jacobians of Hyperelliptic Curves

In this paper we obtain conditions on the divisors of the group order of the Jacobian of a hyperelliptic genus 2 curve, generated by the complex multiplication method described by Weng (2003) and Gaudry et al (2005). Examples, where these conditions imply that the Jacobian has a large cyclic subgroup, are given.

متن کامل

Explicit Descent for Jacobians of Cyclic Covers of the Projective Line

We develop a general method for bounding Mordell-Weil ranks of Jacobians of arbitrary curves of the form y = f(x). As an example, we compute the Mordell-Weil ranks over Q and Q( √ −3) for a non-hyperelliptic curve of genus 8.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008